Acta Cryst. (1999). C55, 1247-1248

Polymeric (cyclopropane-1,1-dicarboxylato)copper(II)

Alke Petri, Thomas Schwarz, Joachim Schilling and Axel Lentz

Abteilung Anorganische Chemie I, Universität Ulm, Albert-Einstein-Allee II, D-89069 Ulm, Germany. E-mail: alke. petri@chemie.uni-ulm.de
(Received 14 May 1998; accepted 26 April 1999)

Abstract

The crystal structure of the polymeric title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]_{n}$, contains infinite chains of coppercarboxylate units in which the copper is coordinated in a planar manner by the O atoms. The chains are linked by $-\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ - bridges resulting in a three-dimensional polymeric structure.

Comment

There is little information about the structures of compounds of transition metals with cyclopropane-1,1-dicarboxylic acid; only a few structures with platinum are known (Huang et al., 1990). Recently, we reported the structure of hexaaquacobalt(II) bis(hydrogen cyclopropane-1,1-dicarboxylate) (Schwarz et al., 1998), which is the only known structure of a first row transition metal complex with this acid.

In the title compound, (I), there are four identical $\mathrm{Cu}\left[\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{COO})_{2}\right]$ formula units in the unit cell. Each copper ion is coordinated in a planar manner by four O atoms, with bonding angles of 96.18 (11) and $91.71(11)^{\circ}$. Two atoms [O^{i} and $\mathrm{O} 2^{\mathrm{ii}}$; symmetry codes: (i) $y-\frac{1}{2}, \frac{1}{2}-x, z-\frac{1}{4}$; (ii) $\left.\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{4}-z\right]$ belong to the same cyclopropane-1,1-dicarboxylate ligand, and

(I)
the third and fourth O atoms to different ring systems in each case. This arrangement is illustrated in Fig. 1. The polymeric structure can be described as chains (formed by the fourfold screw axis) along \mathbf{c}. Each chain includes four copper cations which will be denoted as $\mathrm{Cu}_{A}, \mathrm{Cu}_{B}$, Cu_{C} and Cu_{D}. The bridging O atoms which are not involved in the chelate bonding construct one string in the c direction with Cu_{A} and Cu_{C}. For Cu_{B} and Cu_{D}, they connect the chains in the a and b directions. The bond lengths range from 1.9243 (17) \AA for $\mathrm{Cu}-\mathrm{O}^{2}$ to 1.9464 (16) \AA for $\mathrm{Cu}-\mathrm{O}$. The copper cation lies
in the plane formed by the cyclopropane ring, Cl^{i} $\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{ii}}$. Nevertheless, the point symmetry of the formula unit $\mathrm{Cu}\left[\mathrm{C}_{3} \mathrm{H}_{4}(\mathrm{COO})_{2}\right]$ is not $\boldsymbol{C}_{2 v}$. The dihedral angle between the two carboxylate groups is found to be 77.81 (3) $)^{\circ}$, and between a carboxylate group and the cyclopropane ring is $52.15(1)^{\circ}$. The average bond length within the ring is $1.518 \AA$, the individual bond lengths varying from 1.537 (4) ($\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$) to 1.479 (6) \AA ($\mathrm{C} 2^{\mathrm{i}}-\mathrm{C} 2^{\mathrm{ii}}$). Two bond angles are of major importance: on the one hand, the value for the angle $\mathrm{Cl}^{i}-\mathrm{O}^{\mathrm{i}}-$ Cu 1 is $128.22(16)^{\circ}$, while on the other hand, a value of 112.31 (15) ${ }^{\circ}$ is found for the bridging angle Cu -$\mathrm{O}-\mathrm{Cl}$. All other geometric parameters are in good agreement with other compounds which contain the cyclopropane-1,1-dicarboxylic acid moiety (Meester et al., 1971; Bréhin et al., 1992).

Fig. 1. The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme. Symmetry codes: (i) $-\frac{1}{2}+y, \frac{1}{2}-x,-\frac{1}{4}+z$; (ii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{4}-z$; (iii) y, x, $-z$; (iv) $\frac{1^{2}}{2}-y, \frac{f}{2}+x, \frac{1}{4}+z$; (v) $1-y, 1-x^{2}, \frac{1}{2}-z$; (vii) $\frac{1}{2}-x$, $\frac{1}{2}+y, \frac{1}{4}-\frac{2}{z}$.

Experimental

Single crystals suitable for X-ray analysis were grown in tetramethoxysilane gel (TMOS) (Arend \& Connelly, 1982). A $0.1 \mathrm{~mol} \mathrm{l}^{-1}$ copper nitrate solution with 10% TMOS was allowed to set in test tubes for four days. An aqueous solution of $0.2 \mathrm{~mol} \mathrm{l}^{-1}$ cyclopropane-1,1-dicarboxylic acid (Singh \& Danishefsky, 1975) was placed over the set gel. Well developed dark-blue crystals were obtained after three weeks at a growing temperature of 313 K .

Crystal data

$\begin{array}{ll}{\left[\mathrm{Cu}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right]} & \text { Mo } K \alpha \text { radiation } \\ M_{r}=191.62 & \lambda=0.71073 \AA\end{array}$

Tetragonal

$P 4,2,2$
$a=6.7940$ (5) \AA
$c=11.9557(11) \AA$
$V=551.86(8) \AA^{3}$
$Z=4$
$D_{x}=2.306 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=2.2 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} measured by pycnometry

Data collection

Stoe Imaging Plate
Diffractometer System (IPDS)
Rotation scans
Absorption correction:
numerical (FACEIT,
X-SHAPE and X-RED;
Stoe \& Cie, 1995)
$T_{\text {min }}=0.163, T_{\text {max }}=0.211$

Cell parameters from 616 reflections
$\theta=1.65-26.05^{\circ}$
$\mu=3.892 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Bipyramidal
$0.50 \times 0.45 \times 0.40 \mathrm{~mm}$ Dark blue

1070 measured reflections
358 independent reflections (plus 183 Friedel-related reflections)
522 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.99^{\circ}$
$h=-5 \rightarrow 5$
$k=0 \rightarrow 8$
$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.018$
$w R\left(F^{2}\right)=0.048$
$S=1.095$
541 reflections
48 parameters
H atoms treated by a mixture of independent and constrained refinement $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0330 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.362 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.259 \mathrm{e}^{-3}$
Extinction correction:
SHELXL97 (Sheldrick, 1997a)
Extinction coefficient: 0.067 (4)

Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack (1983)
Flack parameter $=-0.02(3)$

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {cq }}$
Cul	0.23094 (4)	0.23094 (4)	0	0.01612 (18)
01	0.4727 (2)	0.2598 (3)	0.08576 (13)	0.0224 (4)
O2	0.2995 (3)	0.4824 (3)	0.17479 (13)	0.0244 (4)
Cl	0.4541 (3)	0.3782 (3)	0.16531 (18)	0.0170 (5)
C2	0.8164 (4)	0.3071 (4)	0.2131 (2)	0.0264 (6)
C3	0.6144 (4)	0.3856 (4)	1/4	0.0171 (6)

Table 2. Selected geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{Cu}-\mathrm{O}^{\mathrm{i}}$	$1.9243(17)$	$\mathrm{Cu}-\mathrm{Ol}$	$1.9464(16)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{ii}}$	$91.71(11)$	$\mathrm{O} 1-\mathrm{Cu}-\mathrm{Ol}^{\mathrm{iii}}$	$96.18(11)$

$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O}^{2 \mathrm{ii}} \quad 91.71(11) \quad \mathrm{Ol}-\mathrm{Cul}-\mathrm{Ol}^{\mathrm{iid}} \quad 96.18$ (11)
Symmetry codes: (i) $y-\frac{1}{2}, \frac{1}{2}-x, z-\frac{1}{4}$; (ii) $\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{4}-z$; (iii) $y, x,-z$.

Two enantiomorphic space groups, $P 4_{1} 2_{1} 2$ or $P 4_{3} 2_{1} 2$, are possible for the investigated crystal. In order to determine the correct absolute structure, refinement was performed in both space groups. The Flack parameter (Flack, 1983) is helpful in solving the problem. It is almost zero [-0.02 (3)] for $P 4_{1} 2_{1} 2$ and 1.00 (5) for $P 4_{3} 2_{1} 2$, so it turns out that the first space group is correct.

Data collection: IPDS Software (Stoe \& Cie, 1995). Cell refinement: IPDS Software. Data reduction: IPDS Software. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997b). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: PLATON92 (Spek, 1992). Software used to prepare material for publication: PLATON92.

AP would like to thank the Fonds der Chemischen Industrie for financially supporting the work described in this manuscript.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1210). Services for accessing these data are described at the back of the journal.

References

Arend, H. \& Connelly, J. J. (1982). J. Cryst. Growth, 56, 642-644.
Bréhin, P., Kozelka, J. \& Bois, C. (1992). Acta Crvist. C48, 20942096.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Huang, Z., Li, C., Feng, J., Tang, W. \& Zhou, Z. (1990). Wuji Huaxue Xuebao, 6, 287-294.
Meester, M. A. M., Schenk, H. \& MacGillavry, C. H. (1971). Acta Cryst. B27, 630-634.
Schwarz, Th., Petri, A., Schilling, J. \& Lentz, A. (1998). Acta Cryst. C54, 1104-1105.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Singh, R. K. \& Danishefsky, S. (1975). J. Org. Chem. 40, 2969-2970.
Spek, A. L. (1992). PLATON92. Molecular Geometry Program. University of Utrecht, The Netherlands.
Stoe \& Cie (1995). IPDS Software. Version 2.86. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1999). C55, 1248-1250

Tetraaqua(1,10-phenanthroline- N, N)nickel(II) dinitrate monohydrate

Saoussen Namouch Cherni, Ahmed Driss and Tahar Joulni
Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia. E-mail: tahar.jouini@fst.rnu.tn

(Received II December 1998; accepted I April 1999)

Abstract

The title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, consists of tetraaqua(1,10-phenanthroline)nickel(II) cations, nitrate anions and water molecules. The $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated in a distorted octahedral arrangement by two water molecules and two tertiary N atoms from one phenanthroline ligand in equatorial positions, and by two O atoms of water in axial positions. The $\mathrm{Ni}-\mathrm{O}$ bond lengths range from 2.053 (2) to 2.105 (2) \AA and the two $\mathrm{Ni}-\mathrm{N}$ bond lengths are 2.068 (2) and 2.070 (2) \AA,

